

CESAR BRIONES

(813) 497-0119 • cesar.briones.aranda@gmail.com • linkedin.com/in/cesar-briones-aranda • cbrionesaranda.github.io/portfolio

EDUCATION

Bachelor of Science in Mechanical Engineering University of South Florida	Expected May 2026 GPA: 3.72/4.0
---	------------------------------------

EXPERIENCE

Research Lab Assistant , USF Corrosion Research Laboratory – Void detection in tendons	May 2024 – Present
<ul style="list-style-type: none">Used Python and FFT-based signal processing to estimate baseline from magnetic data for grout quality analysisDesigned custom PCBs using EasyEDA and transitioned to third-party fabrication to improve project scalabilityDeveloped a Python-based data acquisition application to collect and analyze tendon impedance measurementsIntegrated Arduino-based sensing hardware with real-time data feedback to enhance troubleshooting	
Research Lab Assistant , MNMC Laboratory – Polymer simulation	May 2025 – July 2025
<ul style="list-style-type: none">Developed an ANSYS Fluent model to simulate shear stress in viscous polymers under varying rotational speedsOptimized meshing strategies and tested multiple boundary and initial conditions to improve simulation accuracy	
Research Lab Assistant , RANCS Research Group – Autonomous Vehicles	December 2023 – March 2024
<ul style="list-style-type: none">Designed and built an aluminum frame to elevate a \$10,000 LIDAR sensor by 1 ft, resolving collision issuesDetermined the minimum mounting height required to prevent LIDAR interference with the car roof and validated the solution through on-road testing, achieving over 100 hours of successful on-road software evaluation	

LEADERSHIP

IREC Chief Engineer , USF Rocketry Team (SOAR)	May 2025 - Present
<ul style="list-style-type: none">Led the team in the design and development of a high-power rocket for the IREC 10K COTS categorySupervised 7 subsystems, ensuring full system integration and compliance with competition requirementsConducted system design reviews to confirm readiness, coordinating with faculty mentors and competition judgesDefined constraints and derived technical requirements for each subsystem to align with mission objectives	

PROJECTS

Coaxial Swirl Injector , Independent	June 2025 – Present
<ul style="list-style-type: none">Designed a bipropellant injector optimized for N2O and Ethanol in a 2400N thrust liquid engineConducted preliminary flow simulations in ANSYS Fluent to assess injector behavior and spray characteristicsValidated flow performance using a 3D-printed resin model, performing tests to verify spray angle and atomizationApplied Parker O-Ring Handbook guidelines to design seal grooves and select compatible elastomers	
Active Aerodynamic Control , USF Rocketry Team (SOAR)	June 2024 – May 2025
<ul style="list-style-type: none">Designed a four-bar mechanism to disrupt the flow regime around the rocket, achieving the goal of a variable C_dPerformed parametric CFD simulations using Ansys Fluent, calculating for the variance of drag over deploymentAchieved a 26% mass reduction in CNC-machined aluminum parts by slotting non-critical areas, optimized with FEARegressed CFD drag data into a multivariate polynomial equation using MATLAB, reducing computational time for drag calculations and enabling more operations per unit of time in the airbrakes system's PID control	

SKILLS

Programing Languages: MATLAB, Python, C#
Software Proficiency: SolidWorks, Ansys Fluent and Mechanical, NX12, COMSOL Multiphysics, Fusion 360, EasyEDA
Certifications: SOLIDWORKS Associate - Mechanical Design (CSWA) & Additive Manufacturing
Fabrication: CNC Machining Programming and Operation, Soldering, 3D Printing, Power Tools, composites handling